$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$101.6(2)$	$101.6(3)$	$101.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$108.1(3)$	$109.9(3)$	$109.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$106.1(2)$	$106.4(3)$	$107.2(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$109.4(2)$	$108.1(3)$	$109.6(3)$
$\mathrm{C} 11-\mathrm{C} 5-\mathrm{C} 4$	$115.6(2)$	$114.7(3)$	$115.6(3)$
$\mathrm{C} 21-\mathrm{C} 2-\mathrm{C} 3$	$116.5(2)$	$115.5(3)$	$116.2(3)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 6$	$112.5(2)$	$113.9(3)$	$112.8(3)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 4$	$113.2(2)$	$112.2(3)$	$111.3(3)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 2$	$111.4(2)$	$110.5(3)$	$111.1(3)$

The structure analysis of (I) proceeded routinely and the H atoms were located by difference syntheses and refined isotropically. For (II), systematic absences indicated the possible space groups Pca2 ${ }_{1}$ or Pcam. A satisfactory solution was obtained in the non-centrosymmetric space group with two molecules in the asymmetric unit. The C -bonded H atoms were included in geometrically calculated positions and N -bonded H atoms were found from difference Fourier maps and refined isotropically. The collection of data at low temperature was carried out in order to improve the counting statistics [using an Oxford Cryosystems Cryostream cooler (Cosier \& Glazer, 1986)]. In the case of (II), the absolute direction of the polar axis cannot be determined reliably since the values of anomalous dispersion for the heaviest O atoms in the case of molybdenum radiation are very small.

For both compounds, data collection: Kuma KM-4 Software (Kuma Diffraction, 1989); cell refinement: Kuma KM-4 Software; data reduction: Kuma KM-4 Software; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1033). Services for accessing these data are described at the back of the journal.

References

Aubé, J., Peng, X., Wang, Y. \& Takusagawa, F. (1992). J. Am. Chem. Soc. 114, 5466-5467.
Bachechi, F., Mura, P. \& Zambonelli, L. (1980). Acta Cryst. B36, 2604-2608.
Baran, J. \& Mayr, H. (1987). J. Am. Chem. Soc. 109, 6519-6521.
Baran, J. \& Mayr, H. (1989). J. Org. Chem. 54, 5774-5783.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19. 105-107.
Huisgen, R. (1984). 1,3-Dipolar Cycloaddition Chemistra. Vol. 1, edited by A. Padwa, p. 152. New York: Wiley.
Jerzykiewicz, L., Dziewońska-Baran, D., Baran. J. \& Lis, T. (1993). Acta Crist. C49, 400-402.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Kauffmann, T. \& Eidenschink, R. (1971). Angen. Chem. 83, 794-795.
Kauffmann, T., Habersaat, K. \& Köppelmann, E. (1972). Angew. Chem. 84, 262-263.
Kauffmann, T. \& Köppelmann, E. (1972). Angew. Chem. 84, 261-262.
Kuma Diffraction (1989). Kuma KM-4 Software User's Guide. Version 3.1. Kuma Diffraction, Wrocław, Poland.

Mayr, H., Baran, J. \& Heigl, U. W. (1991). Gazz. Chim. Ital. 121, 373-381.
Mayr, H., Heigl, U. W. \& Baran, J. (I993). Chem. Ber. 126, 191.31916.

Ried, W., Dietschmann, H. \& Bats, J. W. (1981). Acta Cryst. B37, 2248-2250.
Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.

Woodward, R. B. \& Hoffmann, R. (1969). Angen: Chem. 81, 797-869.
Young, R. N. \& Ahmad, M. A. (1982). J. Chem. Soc. Perkin Trans. 2, 35-38.

Acta Cryst. (1998). C54, 870-872

Ethyl 3,5-Dimethyl-4-oxo-cis-2,6-diphenyl-piperidine-1-carboxylate

M. Suresh Kumar, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}$
S. Ponnuswamy, ${ }^{\text {b }}$ R. Jeyaraman, ${ }^{\text {b }}$ K. Paneerselvam ${ }^{\text {c }}$
and Manuel Soriano-Garciá
"Department of Crystallography and Biophysics, University of Madras, Guind. Campus, Chennai 600025, India, ${ }^{\text {b }}$ Department of Chemistry: Bharathidasan University, Tiruchirapalli 620 024, India, and 'Instituto de Quimica, Circuito Exterior, Cuidad Universitaria. Delegacion Coyoacan, México DF 04510, México. E-mail: crustal@giasmd01.vsnl.net.in

(Received 28 April 1997: accepted 6 Jamuary 1998)

Abstract

The piperidine ring in the title compound, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}$, adopts a distorted-boat conformation. Some conjugation of the lone pair of the N atom with the carbonyl group is observed. The two phenyl rings form dihedral angles of $88.9(1)$ and $79.1(1)^{\circ}$ with the best plane through the piperidine ring.

Comment

Piperidine derivatives are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia or to facilitate radiological evaluation, and to correct a variety of disturbances of gastrointestinal functions (Robinson, 1973). Several 2,6-disubstituted piperidines are found to be useful as tranquilisers (Bochringer \& Soehne, 1961) and possess hypotensive activity (Severs et al., 1965), and a combination of stimulant and depressant effects on the central nervous system (Ganellin \& Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1990).

The torsion angles of the title compound, (I), show that the piperidine ring adopts a distorted-boat conformation. The carbonyl group of the ethoxycarbonyl moiety shows some conjugation with the N 1 atom of the piperidine ring; $\mathrm{N} 1-\mathrm{C} 191.367$ (3) and $\mathrm{C} 19-\mathrm{O} 20$ 1.204 (3) \AA, the N1 atom being 0.156 (2) \AA out of the C2, C6, C19 plane. The methyl groups in the 3 and 5 positions of the piperidine ring assume axial and equatorial
orientations, respectively, as can be seen from the torsion angles $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 24-173.8(2)$ and $\mathrm{N} 1-$ C6-C5-C25 63.4 (2) ${ }^{\circ}$.

(I)

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}$
$M_{r}=351.43$
Monoclinic
$P 2_{1} / n$
$a=10.404(2) \AA$
$b=9.743(2) \AA$
$c=19.096(3) \AA$
$\beta=95.70(2)^{\circ}$
$V=1926.1(6) \AA^{3}$
$Z=4$
$D_{x}=1.212 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 20 reflections
$\theta=10-18^{\circ}$
$\mu=0.639 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thick plate
$0.6 \times 0.5 \times 0.3 \mathrm{~mm}$
Colourless

Data collection

Siemens $P 4$ diffractometer
$R_{\text {in }}=0.016$
$\omega / 2 \theta$ scans
Absorption correction:
$\theta_{\text {max }}=62.49^{\circ}$
CYLABS (Nardelli, 1997)
$T_{\text {min }}=0.717, T_{\text {max }}=0.826$
3244 measured reflections
3058 independent reflections
2495 reflections with
$I>2 \sigma(I)$
$h=-11 \rightarrow 11$
$k=0 \rightarrow 11$
$l=0 \rightarrow 21$
3 standard reflections every 200 reflections intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}<0.001$.
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$\Delta \rho_{\text {max }}=0.182 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.157$
$S=1.030$
3055 reflections
239 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.07 P)^{2}\right.$ $+0.9 P]$
where $P=\left(F_{\%}^{2}+2 F_{\ddots}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=0.182 \mathrm{e} \AA$
$\Delta \rho_{\text {min }}=-0.200 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0087 (9)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

NI-C19	1.367 (3)	C19-O20	1.204 (3)
$\mathrm{N} 1-\mathrm{C} 2$	1.486 (2)	C19-O21	1.344 (3)
NI-C6	1.48 .3 (3)	$\mathrm{O} 21-\mathrm{C} 22$	1.456(3)
C4-026	1.208 (3)		
$\mathrm{C} 19-\mathrm{N} 1-\mathrm{C} 2$	114.1 (2)	O20-C19-O21	124.2 (2)
C19-N1-C6	122.4 (2)	O20-C19-NI	123.9 (2)
C2-NI-C6	120.0(2)	O21-Cl9-N1	111.9 (2)
C13-C2-C3	110.8 (2)	$\mathrm{C} 19-\mathrm{O} 21-\mathrm{C} 22$	115.9 (2)
$\mathrm{C} 19-\mathrm{Ni}-\mathrm{C} 2-\mathrm{Cl} 3$	-66.9 (2)	$\mathrm{C} 2-\mathrm{NI}-\mathrm{C} 6-\mathrm{C} 5$	43.8 (2)
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	9.3 (3)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	-58.0) (2)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-48.2 (2)	C4-C5-C6-C7	68.6 (2)
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 24$	61.3 (2)	$\mathrm{C} 2-\mathrm{Ni}-\mathrm{Cl} 19-\mathrm{O} 21$	-176.8(2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	33.2 (3)	$\mathrm{N} 1-\mathrm{Cl} 9-\mathrm{O} 21-\mathrm{C} 22$	178.7 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	20.3 (3)		

Beyond 62.49°, we could not detect a diffraction pattern and so the data collection was restricted to this value.

Data collection: XSCANS (Siemens, 1992). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: PARST (Nardelli, 1983, 1995).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1307). Services for accessing these data are described at the back of the journal.

References

Bochringer, C. F. \& Soehne, G. M. B. H. (1961). Chem. Abstr. 55. 24796.

Ganellin, C. R. \& Spickett, R. G. W. (1965). J. Med. Chem. 8, 619_ 625.

Mobio, I. G., Soldatenkov, A. T., Fedorov, V. O.. Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. \& Andreeva, E. I. (1990). Khim. Farm. Zh. Chem. Abstr. 112, 7331 y.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Crist. 28, 659.
Nardelli, M. (1997). CYLABS. Program for Cylindrical Absorption Correction. University of Parma, Italy.
Ravindran, T., Jeyaraman, R., Murray, R. W. \& Singh, M. (1991). J. Org. Chem. 56, 4833-4840.
Robinson, O. P. W. (1973). Post-Grad. Med. J. 49 (Suppl.), 9-12.
Severs, W. B., Kinnard, W. J. \& Buckley, J. P. (1965). Chem. Abstr. 63, 10538.
Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1992). XSCANS Users Manual. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zsolnai, L. (1997). ZORTEP. Prograin for Cnistal Structure Illustration. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 872-875

Three Cycloadducts Formed by the Reaction of Bis(phenylazo)stilbene with Acetylenic and Olefinic Dipolarophiles

D. Ramaiah, ${ }^{a}$ Nigam P. Rath ${ }^{b}$ and M. V. George ${ }^{a . c} . d$
${ }^{a}$ Photochemistry Research Unit, Regional Research Laboratory (CSIR), Trivandrum 695 019, India, ${ }^{\text {b }}$ Department of Chemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA, 'Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, and ${ }^{\text {d }}$ Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560 064, India. E-mail: nigam_rath@umsl.edu

(Received 16 June 1997; accepted 19 November 1997)

Abstract

Bis(phenylazo)stilbene, (1), undergoes facile cycloaddition reactions with acetylenic and olefinic dipolarophiles to give the corresponding cycloadducts. The cycloadducts of (1) with dibenzoylacetylene (DBA), trans-1,2-dibenzoylethylene (trans-DBE) and acrylonitrile (AN) have been unambiguously identified through X-ray crystallographic analysis as, formally, 5,6-dibenzoyl-2,3a,4,6a-tetraphenyl-2,3a,4,6a-tetrahydro-

1,2,3,4-tetraazapentalene [$\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$, (5)], 2,3a,4,6a-tetraphenyl-2,3a,4,5,6,6a-hexahydro-1,2,3,4-tetraazapenta-lene-6-carbonitrile $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5},(6 a)\right.$] and 5,6-dibenzoyl-2,3a,4,6a-tetraphenyl-2,3a,4,5,6,6a-hexahydro-1,2,3,4-tetraazapentalene $\left[\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2},(6 b)\right]$, in each of which there is a delocalized double bond over atoms N1, N2 and N3 $[\mathrm{N} 1 \cdots \mathrm{~N} 2 \cdots \mathrm{~N} 3: \mathrm{N} 1 \cdots \mathrm{~N} 2 / \mathrm{N} 2 \cdots \mathrm{~N} 31.297(2) / 1.305(2)$, $1.308(2) / 1.302(1)$ and $1.298(1) / 1.298(1) \AA$ for (5), $(6 a)$ and $(6 b)$, respectively]. In (5), the $\mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{5}$ substituent on C 6 is almost fully conjugated with the $\mathrm{C} 5=\mathrm{C} 6$ double bond $[\mathrm{O} 2=\mathrm{C} 32-\mathrm{C} 6=\mathrm{C} 5$ torsion angle $166.4(2)^{\circ}$. Compounds (5), ($6 a$) and ($6 b$) are examples of a new class of heterocyclic compounds.

Comment

Several suggestions have been made concerning the structures of the oxidation products of bisphenylhydrazones and bisbenzoylhydrazones of 1,2-diketones. These include a dihydro-1,2,3,4-tetrazine structure (von Pechman, 1897) and a bisazoolefin structure (Stolle, 1926; Grammaticakis, 1947) for the oxidation products of 1,2-diketone bisphenylhydrazones, whereas enol derivatives have been suggested as the oxidation products of bisbenzoylhydrazones of 1,2-diketones (Curtin \& Alexandrou, 1963). A suggestion has also been made (Bauer et al., 1964) that certain ortho-bisazo compounds containing electron-withdrawing groups attached to one of the azo groups exist in the meso-ionic form. It has been reported (Angadiyavar et al., 1971; Sukumaran et al., 1972) that the oxidation products of bisphenylhydrazones of several 1,2-diketones undergo facile 1,3-dipolar cycloaddition reactions with acetylenic and olefinic dipolarophiles to give adducts such as (4), (3a) and (3b).

(6b) $R_{1}=R_{2}=\mathrm{COC}_{6} \mathrm{H}_{5}$

